skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burman, Prabir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Summary The accurate estimation of prediction errors in time series is an important problem. It immediately affects the accuracy of prediction intervals but also the quality of a number of widely used time series model selection criteria such as AIC and others. Except for simple cases, however, it is difficult or even infeasible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), until today there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, this work is therefore concerned with the estimation of prediction errors in both univariate and multivariate stationary time series. In particular, several estimates are developed for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, where causal invertible ARMA and nonparametric AR processes are discussed as lead examples. Simulation results indicate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modeling is prediction. 
    more » « less